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We study the phase diagram at finite temperature of a system of Fermi particles on the sites of the Bethe lattice with 
coordination number z and interacting through onsite U and nearest-neighbor V interactions. This is a physical realization of 
the extended Hubbard model in the atomic limit. By using the equations of motion method, we exactly solve the model. For 
an attractive intersite potential, we find, at half filling, a phase transition towards a broken particle-hole symmetry state. The 
critical temperature, as a function of the relevant parameters, has a re-entrant behavior as already observed in the 
equivalent spin-1 Ising model on the Bethe lattice. 
 
(Received April 1, 2008; accepted June 30, 2008) 
 
Keywords: Hubbard model, Bethe lattice 
 
 

 
1. Introduction 
 
Recently, it has been shown [1] that a system of q 

species of Fermi particles, localized on the sites of a 
Bravais lattice, is exactly solvable in any dimension by 
means of the equations of motion approach [2]. This Fermi 
system is isomorphic to a spin-q/2 Ising model in an 
external magnetic field. As a consequence, spin systems 
can be studied within a new approach [1]. Exactly solvable 
means that it is always possible to find a complete set of 
eigenvalues and eigenoperators of the Hamiltonian, which 
closes the hierarchy of the equations of motion. Thus, one 
can get exact expressions for the relevant Green’s 
functions and correlation functions. One finds that these 
functions depend on a finite set of parameters to be self-
consistently determined [2]. It has been already shown 
how it is possible to fix such parameters by means of 
symmetry and algebra constraints in the case of one 
dimensional systems for q=1,2,3 [3], and in the case of the 
Bethe lattice with coordination number z and q=1 [4].  

In this paper, we shall address the case of q=2 species 
of Fermi particles on the sites of the Bethe lattice with 
coordination number z and interacting through nearest-
neighbors interaction V. By considering also an onsite 
interaction U, one has the extended Hubbard model in the 
atomic limit. We find that for an attractive nearest-
neighbor interaction there is a transition from a phase 
where the particle-hole symmetry is preserved to a phase 
where this symmetry is broken. The relative variations of 
the two regions depend on the coordination number z. 
Furthermore, for U/|V|>2 the phase diagram exhibits a re-
entrant behavior. 

The plan of the paper is as follows: in Sec. 2, we 
outline the equations of motion method for the extended 
Hubbard model in the atomic limit. In Sec. 3, we compute 
the Green’s and correlation functions and find that they 
depend only on two parameters. As a result, in Sec. 4, we 

are able to get a set of self-consistent equations enabling 
us to fix these parameters in terms of which all the local 
properties of the system can be expressed. In Sec. 5 we 
shall determine the transition temperature as a function of 
the onsite interaction at half filling and analyze the phase 
diagram for a wide range of values of the parameters T, U 
(in units of V ) and for different values of the 
coordination number z. In Appendix A we briefly discuss 
the equivalence between the extended Hubbard model in 
the atomic limit and the spin-1 Ising model on the Bethe 
lattice [8,9]. Finally, Sec. 6 is devoted to our concluding 
remarks. 

 
 
2. The Hamiltonian and the equations of 

motion 
 
The extended Hubbard Hamiltonian in the atomic 

limit is given by 
 

 1( ) ( ) ( ) ( ),
2i i i j

H n i U D i V n i n jμ
≠

= − + +∑ ∑ ∑     (2.1) 

 
where U and V represent the onsite and the nearest-
neighbor intersite interaction, respectively. μ  is the 
chemical potential, ( ) ( ) ( )n i n i n i↑ ↓= +  and 

( ) ( ) ( )D i n i n i↑ ↓=  are the density and double occupancy 
operators at site i, respectively. As usual, 

†( ) ( ) ( )n i c i c iσ σ σ=  with { },σ = ↑ ↓  and ( )c iσ  ( † ( )c iσ ) is 
the fermionic annihilation (creation) operator of an 
electron of spin σ  at site i, satisfying canonical anti-
commutation relations. In the following we shall use the 
spinor notation for all fermionic operators. For instance, 

( )† † †( ) ( ) ( )c i c i c i↑ ↓= . The sums in Eq. (2.1) run over the 
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sites of a Bravais lattice. Here, we shall consider as 
Bravais lattice the Bethe lattice, which is an infinite 
Cayley tree consisting of a central site - which we denote 
by (0) - with z nearest-neighbors forming the first shell. 
Each site of a shell is joined to z-1 nearest-neighbors to 
form the second shell, and so on to infinity. Thus, on the 
Bethe lattice, the Hamiltonian (2.1) may be conveniently 
written as 

 ( )

1

(0) (0) ,
z

p

p

H n UD Hμ
=

= − + +∑                     (2.2) 

where ( )pH  represents the Hamiltonian of the p-th sub-
tree rooted at the central site (0) and it can be written as  
 
 1

( ) ( , )

1
( ) ( ) (0) ( )

z
p p m

m
H n p UD p Vn n p Hμ

−

=

= − + + +∑ ,     (2.3) 

 
where p are the nearest-neighbors of the site (0). In turns, 

( , )p mH  describes the m-th sub-tree rooted at the site (p), 
and so on to infinity.  

The density operator cannot be used to employ the 
standard methods based on the equations of motion since it 
does not depend on time. In order to use the Green’s 
function formalism one may consider the Hubbard 
operators ( ) [ ( ) 1] ( )i n i c iξ = − and ( ) ( ) ( )i n i c iη = , obeying 
to the following equations of motion: 

 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ,

i i i zV i n i
t

i i U i zV i n i
t

α

α

∂ ξ μξ ξ
∂
∂ η μ η η
∂

= − +

= − +

           (2.4) 

where
1

( ) ( , ) /z

p
n i n i p zα

=
= ∑ , and ( , )i p  are the nearest 

neighbors of site i. The algebra satisfied by the operators n 
and D [2], allows one to establish an important recurrence 
relation obeyed by ( )n iα : 
 

 
2

( )

1
[ ( )] [ ( )]

z
k k m

m
m

n i A n iα α

=

= ∑ ,     (2.5) 

 
where the coefficients ( )k

mA  are rational numbers which 
can be easily determined by the algebra and the structure 
of the Bethe lattice, and which satisfy the relations 

2 ( )
1

1z k
mm

A
=

=∑  and ( )
, ( 1, , 2 )k

m m kA k zδ= = L [5]. The 
recurrence relation (2.5) is of seminal importance because 
it limits the number of composite operators which can be 
generated by the dynamics of the original fermionic 
operators. In fact, by taking successive time derivatives of 
the Hubbard operators ( )iξ and ( )iη , one clearly sees that 
for k>2z, no additional composite operators are generated 
and the equations of motion close [1]. Thus, one may 
define a new composite field operator ( )iψ  [2]: 

 
( ) ( )
1 1
( ) ( )( )

( ) ( )2 2
( )

2 2( ) ( )
2 1 2 1

( ) ( )( ) ( )
( )[ ( )] ( )[ ( )]( ) ( )( )

( ) ; ( ) ( )
( )

( )[ ( )] ( )[ ( )]( ) ( )z z
z z

i ii i
i n i i n ii ii

i i i
i

i n i i n ii i

ξ η

α αξ ηξ
ξ η

η

α αξ η

ξ ηψ ψ
ξ ηψ ψψ

ψ ψ ψ
ψ

ξ ηψ ψ+ +

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟⎜ ⎟⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟= = = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝⎝ ⎠ ⎝ ⎠

M MM M

⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠

. 

 (2.6) 

 
By means of the recursion formula (2.5), the operators 

( ) ( )iξψ  and ( ) ( )iηψ  satisfy the equations of motion: 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) [ ( ), ] ( )

( ) [ ( ), ] ( ) ,

i i i H i
t

i i i H i
t

ξ ξ ξ ξ

η η η η

∂ ψ ψ ε ψ
∂
∂ ψ ψ ε ψ
∂

= =

= =

       (2.7) 

 
where ( )ξε  and ( )ηε are the energy matrices of rank 
(2 1) (2 1)z z+ × + : 

 

( )

(2 1) (2 1) (2 1) (2 1) (2 1)
1 2 2 2 2 1 2

0 0 0 0
0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0
0 z z z z z

z z z

zV
zV

zV
zV

zVA zVA zVA zVA zVA

ξ

μ
μ

μ
ε

μ
μ

μ+ + + + +
− −

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

= ⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟− +⎝ ⎠

L

L

L

M M M L M M M

L

L

L

                    

(2.8) 
 

 

( )

(2 1) (2 1) (2 1) (2 1) (2 1)
1 2 2 2 2 1 2

0 0 0 0
0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0
0 z z z z z

z z z

U zV
U zV

U

U zV
U zV

zVA zVA zVA zVA U zVA

η

μ
μ

μ
ε

μ
μ

μ+ + + + +
− −

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

= ⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟− +⎝ ⎠

L

L

L

M M M L M M M

L

L

L

                     (2.9) 
 

whose eigenvalues, ( )
mE ξ  and ( )

mE η , are given by: 
 

          
( )

( )

( 1)
( 1) ,

m

m

E m V
E U m V

ξ

η

μ
μ

= − + −
= − + + −

              (2.10) 

 
where 1,..., (2 1)m z= + . It is easy to convince oneself that 
the Hamiltonian (2.2) has now been formally solved since 
one has a closed set of eigenoperators and eigenvalues. 
Then, by using the formalism of Green’s functions (GF), 
one can proceed to the calculation of observable 
quantities.  

The two field operators ( ) ( )iξψ  and ( ) ( )iηψ  are 
decoupled at the level of equations of motion, as one may 
clearly see in Eq. (2.7). However, as we shall see in the 
next Sections, they are coupled via a set of self-consistent 
equations allowing for the determination of some 
unknown parameters in terms of which observables 
quantities may be computed. 

 
 
3. Retarded Green's function and correlation  
    functions 
 
The retarded thermal Green's function is defined as: 
 

{ }( ) ( ) ( )† ( ) ( )†( ) (0, ) (0, ) ( ) (0, ), (0, ) ,s s s s sG t t R t t t t t tψ ψ θ ψ ψ′ ′ ′ ′⎡ ⎤− = = −⎣ ⎦
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 (3.1) 
 
where the index s refers either to the Hubbard operator ξ  
or η  and L denotes the quantum-statistical average 
over the grand canonical ensemble. By means of the field 
equations (2.6), one finds that the retarded GF satisfies the 
equation 
 

 ( ) ( ) ( )( )s s sG Iω ε ω⎡ ⎤− =⎣ ⎦ ,                            (3.2) 
 

where ( ) ( )sG ω  is the Fourier transform of 
( ) ( )sG t t′− and { }( ) ( ) ( )†(0, ), (0, )s s sI t tψ ψ=  is the 

(2 1) (2 1)z z+ × + normalization matrix. The solution of Eq. 
(3.2) is [2]: 
 

( , )2 1
( )

( )
1

( )
s mz

s
s

m m

G
E i
σω

ω δ

+

=

=
− +∑ ,                        (3.3) 

 
where ( )s

mE  are the eigenvalues of the energy matrices, as 
given in Eq. (2.10). The spectral density matrices ( , )s n

abσ  
can be computed by means of the formula [2]: 
 

2 1 1( , ) ( ) ( ) ( )

1

z
s n s s s

ab an nc cb
c

Iσ
+ −

=

⎡ ⎤= Ω Ω⎣ ⎦∑ .                (3.4) 

 
In Eq. (3.4), ( )sΩ  is the (2 1) (2 1)z z+ × +  matrix whose 
columns are the eigenvectors of the energy matrix ( )sε . It 
is straightforward to show that ( ) ( )ξ ηΩ = Ω = Ω , where the 
matrix Ω  is given by: 
 

 ,
2 1

1 1, 1
0 1, 1

1.1

p k
z p

k p
k p

z
kk

+ −

⎧
⎪ = =⎪⎪Ω = = ≠⎨
⎪
⎛ ⎞⎪
⎜ ⎟ ≠⎪ −⎝ ⎠⎩

       (3.5) 

 
Moreover, the matrix elements of the normalization 
matrices in Eq. (3.4) can be cast in a simple form as [3] 
 

 
( ) ( 2) ( 2)
,

( ) ( 2)
, ,

n m n m
n m

n m
n m

I

I

ξ

η

κ λ

λ

+ − + −

+ −

= −

=
                    (3.6) 

 
where the charge correlators ( )kκ  and ( )kλ  are defined as  
 

 

( )

( )

[ (0)]

1 (0)[ (0)] .
2

k k

k k

n

n n

α

α

κ

λ

=

=
             (3.7) 

 
Similarly, one finds that the correlation function (CF) 
 

 
( ) ( ) ( )† ( ) ( )1( ) (0, ) (0, ) ( ) ,

(2 )
s s s i t t sC t t t t d e Cωψ ψ ω ω

π

+∞
′− −

−∞

′ ′− = = ∫
                                  (3.8) 

 
can also be expressed in terms of the same charge 
correlators (3.7). In fact, by means of the relation [4]: 
 

 [ ]( ) 1 tanh Im ( )
2

C Gβωω ω⎡ ⎤= − +⎢ ⎥⎣ ⎦
,           (3.9) 

 
where 1/ Bk Tβ = , the CF can be immediately computed 
from Eq. (3.3). One obtains  
 

 
( )

( )

2 1
( ) ( , ) ( ) ( )

1

2 1
( )( ) ( , ) ( )

1

( )

1( ) ,
2

s
m

z
s s n s s

m m
m

z
iE t ts s n s

m
m

C T E

C t t e T

ω σ δ ω

σ

+

=

+
′− −

=

= π −

′− =

∑

∑
 (3.10) 

 
where ( )( ) ( )1 tanh / 2s s

m mT Eβ= + . As one can clearly see, 
the knowledge of the GF’s and, consequently of the CF’s, 
is not fully achieved. In fact, they depend on the unknown 
correlators ( )kκ  and ( )kλ which are expectation values of 
operators not belonging to the basis (2.6). In the next 
Section we shall show how these quantities can be self-
consistently computed. 
 
 

4. Self-consistent equations 
 
In order to compute the unknown correlators (3.7), 

one may start by noticing that, by exploiting the recursion 
relation (2.5), also ( )kκ  and ( )kλ  obey to a recursion 
relation which limits their computation just to the first 2z 
correlators [5]: 

 

 

2
( ) ( ) ( )

1
2

( ) ( ) ( )

1

.

z
k k m

m
m

z
k k m

m
m

A

A

κ κ

λ λ

=

=

=

=

∑

∑
                     (4.1) 

 
Then, one may split the Hamiltonian (2.4) as the sum 

of two terms:  
 

 
( ) ( )

0

0 0 .
I

I

H H H

H z V n nα

= +

=
                  (4.2) 

 
Since 0H  and IH  commute, the quantum statistical 

average of a generic operator O can be expressed as: 
 

 0

0

{ } ,
{ }

I

I

HH

H H

O eTr OeO
Tr e e

ββ

β β

−−

− −
= =                 (4.3) 
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where 0
L  stands for the trace with respect to the 

reduced Hamiltonian 0H . One then considers the 
correlation functions 

 
( ) ( ) ( ) ( ) 1†
1, 0 0 0 , , , 1,..., 2 1

ks
kC s s n s k zα ξ η

−
⎡ ⎤= = = +⎣ ⎦

,                                           (4.4) 
 

which, by means of Eq. (4.3), can be written as: 
 

 

( )
( ) ( ) ( ) 1†

0
1,

0

0 0 0
, , , 1,..., 2 1

I

I

k H

s
k H

s s n e
C s k z

e

βα

β
ξ η

− −

−

⎡ ⎤⎣ ⎦
= = = +                              

(4.5) 
 

The Pauli principle leads to the following algebraic 
relations  
 

 
† † †

† †

( ) ( ) 0 ( ) ( ) ( )
( ) ( ) 0 ( ) ( ) 0,
i n i i n i i
i D i i D i

ξ η η
ξ η

= =
= =

       (4.6) 

 
from which one has † †(0) (0)IHe βξ ξ− =  and 

† † (0)(0) (0)IH z Vne e
αβ βη η− −= . The Hamiltonian 

0H describes a system where the original lattice has been 
reduced to the central site (0) and to z unconnected 
sublattices. Thus, in the 0H -representation, the correlation 
functions connecting sites belonging to disconnected 
graphs can be decoupled. As a result, Eqs. (4.5) can be 
rewritten as: 
 

† 1 (0)† 1
0( ) ( )0 0 0

1, 1,

0 0

(0) (0) [ (0)](0) (0) [ (0)]
, .

I I

k z Vnk

k kH H

n en
C C

e e

αα βα
ξ η

β β

η ηξ ξ − −−

− −
= =

(4.7) 

 
In the 0H -representation, the Hubbard operators obey 

to simple equations of motion: 0[ ( ), ] ( )i H iξ μξ= −  and 

0[ ( ), ] ( ) ( )i H U iη μ η= − − . Thus, it is easy to show that the 
equal time CF’s can be expressed as: 

 
†

1 2(2 )0

†
1 2(2 )0

1(0) (0) 1
1 2

1(0) (0) ( 2 ) ,
21 2

U

U

B B
e e

e B B
e e

βμ β μ

βμ

βμ β μ

ξ ξ

η η

−

−

= = − +
+ +

= = −
+ +

    (4.8) 

where: 
 

 

( )

1 (2 )0

(2 )

2 (2 )0

2 (1 )(0)
1 2

(0) ,
1 2

U

U

U

U

e eB n
e e

eB D
e e

βμ β μ

βμ β μ

β μ

βμ β μ

−

−

−

−

+
= =

+ +

= =
+ +

           (4.9) 

 
and one has used the identities  
 

 † † 1 nσ σ σ σ σξ ξ η η+ = − , † n n nσ σ ση η ↑ ↓= −      .(4.10) 
 

Upon inserting Eqs. (4.8) into Eqs. (4.7) and by taking 
k=1, one finds: 

 
( )

( ) 1 2
1,1

0

(0)
1 2( ) 0

1,1

0

1

2
.

2

I

I

H

z Vn

H

B B
C

e

B B e
C

e

α

ξ
β

β

η
β

−

−

−

− +
=

−
=

       (4.11) 

 
It is not difficult to show that the averages in the 

above equations can be expressed as: 
 

2 2
1 2 1 2 1 2 2 1 20

(0) 2
1 2

0

1 ( 2 )(1 ) (1 )

(1 ) ,

IH z z

z Vn z

e B B B B aX a X B dX d X

e aX a X
α

β

β

−

−

= − + + − + + + + +

= + +

 (4.12) 
 

where VK e β−= , ( 1)a K= − , 2( 1)d K= − . 1X  and 

2X are two parameters defined as: 
 

 1 0
X nα=  ,  2 0

X Dα=            (4.13) 

 
1X  and 2X  are parameters of seminal importance since 

all correlators and fundamental properties of the system 
under study can be expressed in terms of them. Relevant 
physical quantities, such as the mean value of the particle 
density and doubly occupancy, and the charge correlators 

( )kκ  and ( )kλ can be easily computed [5]: 
 

 
2 2

1 2 1 2 2 1 2
2 2

1 2 1 2 1 2 2 1 2
2

2 1 2
2 2

1 2 1 2 1 2 2 1 2

( 2 )(1 ) 2 (1 )
(1 ) ( 2 )(1 ) (1 )

(1 )
,

(1 ) ( 2 )(1 ) (1 )

X X aX a X X dX d X
n

X X X X aX a X X dX d X

X dX d X
D

X X X X aX a X X dX d X

− + + + + +
=

− + + − + + + + +

+ +
=

− + + − + + + + +

                    (4.14) 
and 

 
2

( ) ( ) ( )
1 20 0

1
0

2
( ) ( ) ( )

1 1 2 20 0
1

0

1 [ (0)] ( ) [ (0)]

1 [ (0)] [( 2 ) 2 ] [ (0)] ,
2

I

I

z
k k z z m k

m mH
m

z
k k z z m k

m mH
m

n B f B g n
e

B n B B f B g n
e

α α
β

α α
β

κ

λ

+
−

=

+
−

=

⎧ ⎫= + +⎨ ⎬
⎩ ⎭

⎧ ⎫= + + +⎨ ⎬
⎩ ⎭

∑

∑

              (4.15) 
 

where ( )z
mf  and ( )z

mg  are some easily computable 
coefficients depending on the external parameters T and V 
and where the expectation value 

0
[ (0)]knα  can also be 

expressed in terms of 1X  and 2X  [5]. 
As a result, the solution of the model has been 

reduced to the determination of just two parameters. 1X  
and 2X  can be determined by imposing translational 

invariance. In particular, the requests (0) (0)n nα=  

and (0) (0)D Dα=  lead to a set of two self-consistent 
equations [5]: 
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2 1 (2 ) 2 1
1 1 2 1 2 1 2 1 2

(2 ) 2 1 2 2 1
2 1 2 1 2 2 1 2

2 (1 )(1 ) [2 ( 1) 2 ](1 )

[1 (2 1) ](1 ) 2 (1 ) .

z U z

U z z

X e X dX aX a X e d X dX dX d X

X e dX d X dX d X e K X aX a X

β β μ

β β

μ − − −

μ− − μ −

= − − + + + + − − + +

= + − + + + − + +

 (4.16) 
 

A full investigation of these equations will be given 
elsewhere. In this communication, we shall restrict our 
analysis to the possibility of a breakdown of the particle-
hole symmetry. 

 
5. Breakdown of the particle-hole symmetry 
 
In this Section we shall study the possibility of a 

spontaneous breaking of the particle-hole symmetry. Let 
us consider the following value of the chemical 
potential: / 2U zVμ = + . For this value of μ , Eqs. (4.16) 
become 

 
2 1 2 2 1

1 1 2 1 2 1 2 1 22 (1 )(1 ) [2 ( 1) 2 ](1 )z z z zX GK X dX aX a X K d X dX dX d X− − − −= − − + + + + − − + +  
 (5.1) 

 
2 2 1 2 2 1

2 1 2 1 2 2 1 2[1 (2 1) ](1 ) 2 (1 )z z z zX K dX d X dX d X GK X aX a X− − − + −= + − + + + − + +

, (5.2) 
and Eqs. (4.14) become: 

 
2 2

1 2 1 2
2 2 2

1 2 1 2
2

1 2
2 2 2

1 2 1 2

2 (1 ) 2(1 )
2 (1 ) (1 )

(1 )
,

2 (1 ) (1 )

z z z

z z z z

z

z z z z

GK aX a X dX d X
n

K GK aX a X dX d X

dX d X
D

K GK aX a X dX d X

+ + + + +
=

+ + + + + +

+ +
=

+ + + + + +

 

 (5.3) 
where / 2UG eβ= . It is easy to show that for  
 

 1 21X dX= −                         (5.4) 
 

Eq. (5.1) is always satisfied. Then, by substituting Eq. 
(5.4) into Eq. (5.3) one obtains 
 

 
2

2

11 ,
2 2 (1 )zn D

G a X
= =

+ −
.                    (5.5) 

 
That is, solution (5.4) is in agreement with the 

particle-hole symmetry. Upon inserting Eq. (5.4) into Eq. 
(5.2) one obtains: 
 

2 2 1
2 2 2(1 ) 2 (1 ) 1 0zX K GKX a X −+ + − − = .            (5.6) 

 
Thus, for / 2U zVμ = + , Eqs. (4.16) admit a solution 

which satisfies the particle-hole symmetry and is described 
by the set of equations (5.4) and (5.6). One may ask 
oneself if Eqs. (5.1) and (5.2) do admit other solutions, 
different from the one described by (5.4) and (5.6) and 
thus breaking the particle-hole symmetry. To this purpose, 
one may perturb the solution (5.4), by setting 

1 21X dX w= − + . With a little algebra it is easy to show 
that a solution with 0w ≠ does exist if, and only if, the 
following equation  

/ 2
1 1 1 222 [ ( 2)] ( 1) ( 1) [ ( 2)] 0

U V
z z zK z K z K z z K z

+
− − −+ − + + − − − =  

 (5.7) 
 
is satisfied. This equation will fix the critical temperature 

cT  below which the system admits other solutions, which 
do not satisfy the particle-hole symmetry. Numerical 
calculations show that Eq. (5.7) admits a solution only for 
negative values of V. Thus, in the following, we shall 
consider only the case of attractive intersite potential. It is 
interesting to consider Eq. (5.7) in two extremal limits, 
namely /U V → −∞  and 0cT → . In the former limit, as 
expected, one finds that the critical temperature is the 
same as the one of a spinless fermionic system on the 
Bethe lattice, equivalent to the spin-1/2 Ising model [4,6]: 
 

 
2 2 2( 2) 0

2 ln
2

B c
c

k Tzz K z K
zz V

z

− − = ⇒ = ⇒ =
− ⎛ ⎞

⎜ ⎟−⎝ ⎠
. (5.8) 

 
The limit 0cT → , provides the value of the ratio U/|V| 

at which one should expect a quantum phase transition: 
 

( )
1

/ 2 1 1
2

( 1)2 ( 2) ( 1) ( 2) 0 / 2 ln
2( 2)

z
U z z

B c z

ze z z K z U V k T
z

β
−

− −
−

⎡ ⎤−
− − − − = ⇒ − = ⎢ ⎥−⎣ ⎦

. (5.9) 
 

Thus, in the limit 0cT → , one finds that U/|V|=2, 
independently of the value of z.  

The results obtained from Eq. (5.7) are displayed in 
Fig. 1. One observes that, at fixed coordination number, by 
increasing U from large negative values (i.e., attractive 
onsite interaction) one finds a decrease of the critical 
temperature.  
An interesting feature of the model’s phase diagram is that 
it shows regimes with a re-entrance: namely, fixing 
U/|V|>2 and lowering the temperature, one switches from 
a particle-hole symmetry preserving phase to another one 
where this symmetry is broken at a certain critical 
temperature. Then, as evidenced in Fig. 1, lowering further 
the temperature, one finds another critical temperature at 
which the symmetry is restored. How pronounced the re-
entrance is, depends on z.  
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Fig. 1.The normalized critical temperature / | |cT V as a 
function of the on site interaction U/|V| for different 
values of the coordination number z of the Bethe lattice. 
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6. Concluding Remarks 
 
In this paper we have obtained the finite temperature 

phase diagram of a system of fermions with onsite and 
nearest-neighbor interactions localized on the sites of the 
Bethe lattice. The Hamiltonian describing such a system 
defines the so-called extended Hubbard model in the 
atomic limit. Upon using the equations of motion method, 
it is possible to exactly solve the model. For attractive 
nearest-neighbor interaction we find a critical temperature 
at which the system undergoes a transition to a phase 
where the particle-hole symmetry is broken. This critical 
temperature depends on the ratio U/|V| and on z. It 
increases with increasing z and presents a re-entrant 
behavior for U/|V|>2. 

 
Appendix Spin-1 Ising model on the Bethe lattice 
 
In this Appendix we shall analyze the correspondence 

between the extended Hubbard model on the Bethe lattice 
and the spin-1 Ising model defined on the same lattice. 
A transformation from a fermionic to a spin Hamiltonian 
can be performed by the use of the pseudospin variable 
S(i): 
 

( ) ( ) ( ) 1 ( ) 1S i n i n i n i↑ ↓= + − = − .           (A.1) 
 
S(i) can take four values, with S(i)=0 doubly degenerate: 
 

 

( ) 0 ( ) 0 ( ) 1
( ) 1 ( ) 0 ( ) 0
( ) 0 ( ) 1 ( ) 0
( ) 1 ( ) 1 ( ) 1.

n i n i S i
n i n i S i
n i n i S i
n i n i S i

↑ ↓

↑ ↓

↑ ↓

↑ ↓

= = ⇔ = −
= = ⇔ =
= = ⇔ =
= = ⇔ =

     (A.2) 

 
Under the transformation (A.1) the Hamiltonian (2.2) can 
be cast in the form:  

 
2 ( )

0
1

1
( ) 2 ( , )

1

(0) (0)

(0) ( ) ( ) ( ) ,

z
p

p

z
p p m

m

H S h S E H

H J S S p S p h S p H

=

−

=

= Δ − + +

= − + Δ − +

∑

∑
(A.3) 

 
where 2h zV Uμ= − − / , J=-V, 2UΔ = / and, in the 
thermodynamic limit, 0 ( )E V Nμ= − + , N being the total 
number of sites. Thus, the Hamiltonian (A.3) appears as 
the one of a spin-1 Ising model with nearest-neighbor 
exchange interaction J in the presence of a crystal field Δ  
and of an external magnetic field h. The difference here is 
that the Hamiltonian (A.3) is pertinent to a four-level 
system because of the spin degeneracy. It is possible to get 
rid of the spin degeneracy by mapping the fermionic 
Hamiltonian on the standard spin-1 Ising one with 

{ }( ) 1 0 1S i = − , ,%  paying the price of making the crystal 
field Δ to be temperature dependent [7,8]: 

2 log 2BU k TΔ = / +% . The double degeneracy of every 
S(i)=0 leads to a factor 2 for every singly occupied site in 
the partition function of the classical spin system. This 
gives rise to an overall factor  
 

 
22 [1 ( )]1 ( )2 2 i

S iS i

i

−− ∑= .∏
%%                (A.4) 

 
One may rewrite the partition function of Hamiltonian 
(A.3) as follows:  
 
 

{ ( )} { 1 0 0 1} { ( )} { 1 0 1}

exp{ [ ( )]} exp{ [ ( )]}
S i S i

Z H S i H S iβ β
= − , , , = − , ,

= − = − ,∑ ∑
%

%%

 (A.5) 
 
where H%  is the Hamiltonian of the standard spin-1 Ising 
model on the Bethe lattice, but now with an effective 
temperature-dependent crystal field:  
 

 
2 ( )

0
1

1
( ) 2 ( , )

1

(0) (0)

(0) ( ) ( ) ( )

z
p

p

z
p p m

m

H S h S E H

H J S S p S p h S p H

=

−

=

= Δ − + +

= − + Δ − +

∑

∑

% %% % % %

% % % %% % %

   (A.6) 

 
where 0 0 ln 2BE E k T= +%  and ln 2Bk TΔ = Δ +% . Having 
established the mapping between the two models, we find 
that our critical temperature exactly agrees with the one 
previously found in the literature [9]. 
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