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Exact solution of the extended Hubbard model in the
atomic limit on the Bethe lattice
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We study the phase diagram at finite temperature of a system of Fermi particles on the sites of the Bethe lattice with
coordination number z and interacting through onsite U and nearest-neighbor V interactions. This is a physical realization of
the extended Hubbard model in the atomic limit. By using the equations of motion method, we exactly solve the model. For
an attractive intersite potential, we find, at half filling, a phase transition towards a broken particle-hole symmetry state. The
critical temperature, as a function of the relevant parameters, has a re-entrant behavior as already observed in the

equivalent spin-1 Ising model on the Bethe lattice.
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1. Introduction

Recently, it has been shown [1] that a system of q
species of Fermi particles, localized on the sites of a
Bravais lattice, is exactly solvable in any dimension by
means of the equations of motion approach [2]. This Fermi
system is isomorphic to a spin-g/2 Ising model in an
external magnetic field. As a consequence, spin systems
can be studied within a new approach [1]. Exactly solvable
means that it is always possible to find a complete set of
eigenvalues and eigenoperators of the Hamiltonian, which
closes the hierarchy of the equations of motion. Thus, one
can get exact expressions for the relevant Green’s
functions and correlation functions. One finds that these
functions depend on a finite set of parameters to be self-
consistently determined [2]. It has been already shown
how it is possible to fix such parameters by means of
symmetry and algebra constraints in the case of one
dimensional systems for g=1,2,3 [3], and in the case of the
Bethe lattice with coordination number z and g=1 [4].

In this paper, we shall address the case of g=2 species
of Fermi particles on the sites of the Bethe lattice with
coordination number Z and interacting through nearest-
neighbors interaction V. By considering also an onsite
interaction U, one has the extended Hubbard model in the
atomic limit. We find that for an attractive nearest-
neighbor interaction there is a transition from a phase
where the particle-hole symmetry is preserved to a phase
where this symmetry is broken. The relative variations of
the two regions depend on the coordination number z.
Furthermore, for U/|V|>2 the phase diagram exhibits a re-
entrant behavior.

The plan of the paper is as follows: in Sec. 2, we
outline the equations of motion method for the extended
Hubbard model in the atomic limit. In Sec. 3, we compute
the Green’s and correlation functions and find that they
depend only on two parameters. As a result, in Sec. 4, we

are able to get a set of self-consistent equations enabling
us to fix these parameters in terms of which all the local
properties of the system can be expressed. In Sec. 5 we
shall determine the transition temperature as a function of
the onsite interaction at half filling and analyze the phase
diagram for a wide range of values of the parameters T, U

(in units of |V| ) and for different values of the

coordination number z. In Appendix A we briefly discuss
the equivalence between the extended Hubbard model in
the atomic limit and the spin-1 Ising model on the Bethe
lattice [8,9]. Finally, Sec. 6 is devoted to our concluding
remarks.

2. The Hamiltonian and the equations of
motion

The extended Hubbard Hamiltonian in the atomic
limit is given by

H=-u> ni+u> D(i)+%vz nin(j), 2.1

i#]

where U and V represent the onsite and the nearest-
neighbor intersite interaction, respectively. u is the

n(@)=n,(i)+n (i) and

D(i) =n,(i)n, (i) are the density and double occupancy

chemical potential,

operators at site i, respectively. As  usual,
n, (i) =cl (), () with o={T,d} and c () (c;()) is
the fermionic annihilation (creation) operator of an
electron of spin o at site i, satisfying canonical anti-
commutation relations. In the following we shall use the
spinor notation for all fermionic operators. For instance,

c'(i) :(C;(i) Ci(i)). The sums in Eq. (2.1) run over the
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sites of a Bravais lattice. Here, we shall consider as
Bravais lattice the Bethe lattice, which is an infinite
Cayley tree consisting of a central site - which we denote
by (0) - with z nearest-neighbors forming the first shell.
Each site of a shell is joined to z-1 nearest-neighbors to
form the second shell, and so on to infinity. Thus, on the
Bethe lattice, the Hamiltonian (2.1) may be conveniently
written as

H =—xn(0)+UD(0)+ ) H®,
p=1

where H® represents the Hamiltonian of the p-th sub-
tree rooted at the central site (0) and it can be written as

2.2)

H® = —un(p)+UD(p) +VnO)n(p)+ 3. HE™.  (23)

m=1

where p are the nearest-neighbors of the site (0). In turns,
H™™ describes the m-th sub-tree rooted at the site (p),
and so on to infinity.

The density operator cannot be used to employ the
standard methods based on the equations of motion since it
does not depend on time. In order to use the Green’s
function formalism one may consider the Hubbard
operators &£(i) =[n(i)—1]c(i) and 7(i) =n(i)c(i) , obeying
to the following equations of motion:

o . L
1= 60 =&+ 2V ein® () (2.4)
710 = U —n(@) + (0’ (),
ot
where n“ (i)=ZZp:1 n(i,p)/z, and (i, p) are the nearest
neighbors of site i. The algebra satisfied by the operators n
and D [2], allows one to establish an important recurrence
relation obeyed by n“(i):

@] =3 AV @O, 25)

where the coefficients A(nk) are rational numbers which

can be easily determined by the algebra and the structure
of the Bethe lattice, and which satisfy the relations

> AY=1 and AV =65, (k=1--,22) [5]. The

recurrence relation (2.5) is of seminal importance because
it limits the number of composite operators which can be
generated by the dynamics of the original fermionic
operators. In fact, by taking successive time derivatives of
the Hubbard operators £(i) and 7(i), one clearly sees that
for k>2z, no additional composite operators are generated
and the equations of motion close [1]. Thus, one may
define a new composite field operator y (i) [2]:

v () &) v, (i) nm )
W(i):[”’“'“’] o< VO || M) pgy<| VO || 20070
Ww)(i) ’ H N i

v ) L&t @r vl () (@i OF

(2.6)

By means of the recursion formula (2.5), the operators
w9 (i) and w" (i) satisfy the equations of motion:

iél//(é)(i) — [W(é)(i)’ H]= g(s‘)l//(s‘)(i)

ot 2.7
.0 . . .
iy () = [y (), H] =27y (),
ot
where £ and &£ are the energy matrices of rank
z+D)x(2z+1):
-4 v 0 0 0 0
0 -u v 0 0 0
0 0 —u 0 0 0
e® =] : : : : :
0 0 0 - -u v 0
0 0 0 - 0 —p v
0 zZVAGHD ZVA§2M) ZVAg:” ZVA;QT” —u+ ZVAg“”
(2.8)
U-u v 0 0 0 0
0 U-u v 0 0 0
0 0 U-u 0 0 0
e” =l : : : : :
0 0 0 - U-u Y 0
0 0 0 - 0 U-pu v
0 ZVA(2Z+I) ZVAEHH) ZVA;ii;I) ZVAE?E;I) U 7,u+ZVA§'.z’zfl)
2.9)

whose eigenvalues, ES’ and E\”, are given by:

EY =—u+(m-1)V
n pt(m=1) (2.10)
E =—pu+U+(Mm-1V,

where m=1,...,(2z+1) . It is easy to convince oneself that

the Hamiltonian (2.2) has now been formally solved since
one has a closed set of eigenoperators and eigenvalues.
Then, by using the formalism of Green’s functions (GF),
one can proceed to the calculation of observable
quantities.

The two field operators ¥ (i) and w™ (i) are
decoupled at the level of equations of motion, as one may
clearly see in Eq. (2.7). However, as we shall see in the
next Sections, they are coupled via a set of self-consistent
equations allowing for the determination of some
unknown parameters in terms of which observables
quantities may be computed.

3. Retarded Green's function and correlation
functions

The retarded thermal Green's function is defined as:

G (t-t)=(R[¥” .09 (0.)]) =6t -t)({y* @05 O.1)).



1690 F. Mancini, F. P. Mancini, A. Naddeo

3.1)

where the index s refers either to the Hubbard operator &
or n and < . > denotes the quantum-statistical average

over the grand canonical ensemble. By means of the field
equations (2.6), one finds that the retarded GF satisfies the
equation

[0-£9]G" (@) =1, (3.2)

G®w) is the
GY(t-t) and |“>:<{t//“’(0,t),t//‘s”(0,t)}> is the

where Fourier transform  of

(22 +1)x(2z +1) normalization matrix. The solution of Eq.
3.2)is [2]:

2z+1 (s,m)

G w)=) —2

- 3.3
&S w-EY +is 33)

where E are the eigenvalues of the energy matrices, as
(s.n)

given in Eq. (2.10). The spectral density matrices oy,
can be computed by means of the formula [2]:

2z+1 -1
g =003 [ap]liy. 64
c=1
In Eq. (3.4), Q¥ is the (2z+1)x(2z+1) matrix whose

columns are the eigenvectors of the energy matrix £ . It

is straightforward to show that Q¥ =Q" =Q, where the
matrix Q is given by:

1 k=1, p=1
kzl,p¢1 (35)

7 27+1-p
k-1 k1.

Moreover, the matrix elements of the normalization
matrices in Eq. (3.4) can be cast in a simple form as [3]

Q =

p.k

I(f) — K_(n+m—2) _i(n+m—2)
n,m

(3.6)

() _ 4(nm-2)
lom =4 ,

where the charge correlators k" and A% are defined as

£ =([n" (O)1)

) ) 3.7)
A0 =5<n(0)[n 7).

Similarly, one finds that the correlation function (CF)

+00

SO0 = (y0.0y " 0.10) = [ doe’ 0 @),

(3.8)

can also be expressed in terms of the same charge
correlators (3.7). In fact, by means of the relation [4]:

C(w) = —{1 +tanh %} Im[G(w)], (3.9
where §=1/k,T , the CF can be immediately computed
from Eq. (3.3). One obtains

2z+1
CY@)=n), oc“"T\¥5(w-ES)
m=1
1 2z+1 (310)

e (S) p g
C(s)(t—t') :E g B (t-t) (M Tnis) ,

m=1

where TV = 1+tanh( BES/ 2) . As one can clearly see,
the knowledge of the GF’s and, consequently of the CF’s,
is not fully achieved. In fact, they depend on the unknown

correlators ' and A% which are expectation values of
operators not belonging to the basis (2.6). In the next
Section we shall show how these quantities can be self-
consistently computed.

4. Self-consistent equations

In order to compute the unknown correlators (3.7),
one may start by noticing that, by exploiting the recursion

relation (2.5), also " and A% obey to a recursion
relation which limits their computation just to the first 2z
correlators [5]:

0 = i AL ™
m=1

., 4.1
200 =37 Al 4m

Then, one may split the Hamiltonian (2.4) as the sum
of two terms:

H=H,+H, “2)

H, =zVn(0)n“(0). '

Since H, and H, commute, the quantum statistical
average of a generic operator O can be expressed as:

CTr{0e M} (Oe7™ >0
S TreMy (e ) 43)

(0)
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where <>0 stands for the trace with respect to the

reduced Hamiltonian H, . One then considers the

correlation functions
¥ - <s(0)s"’ (0)[n*(0)]" > s=£n, k=1,..22+1
, 4.4)
which, by means of Eq. (4.3), can be written as:
T a k=1 _pH,
<s(0)s (O)[n“(0)] e >

ch) = , s=&7, k=1,..,22+1

(™),

(4.5)

The Pauli principle leads to the following algebraic
relations

&'in(=0

7O =00 e
£'(HD(i) =0

n'(i)D(i) =0,
EN0)e™ =£70)  and
7 e =pt0)e M@ The

H, describes a system where the original lattice has been

from which one has

Hamiltonian

reduced to the central site (0) and to z unconnected
sublattices. Thus, in the H -representation, the correlation
functions connecting sites belonging to disconnected
graphs can be decoupled. As a result, Eqs. (4.5) can be
rewritten as:

co _EOLO) (o8, (on' o), (rexe ) (4.7)

™), o (™,

In the H-representation, the Hubbard operators obey
to simple equations of motion: [£(i),H,]=—u&(i) and
[77(i),H,1=—(u—U)n(i) . Thus, it is easy to show that the
equal time CF’s can be expressed as:

(€0 0), .

T 1420 4P

Pu
+ _ e 1
<'7(0)’7 (0)>0 T4 02eP 4 efn) _E(Bl —2B,).

1-B, +B, 4.8)

where:
2eﬂﬂ (1 +eﬂ(u—U))
<n(0)>0 = 1+ 267 4 g2 D)

eh2u-0)
B, = <D(0)>0 = 14 2e% 4 gP2n0)”

Bl

(4.9)

and one has used the identities

EE vl =1-n_,nnl=n_—-nn  .(4.10)

Upon inserting Eqgs. (4.8) into Egs. (4.7) and by taking
k=1, one finds:

1-B,+B
©) _
C1,1 —W
’ 4.11)
_ —z/Vn“ (0) .
Cl(rli) — (Bl ZBZ)<E >0

2<e’””‘ >

0

It is not difficult to show that the averages in the
above equations can be expressed as:

(e >ﬂ =1-B,+B, +(B, —2B,)(1+aX, +a’X,)" +B,(1+dX, +d’X,)’
<efz/i’\/n"lm> =(1+aX, +a*X,)",
0

(4.12)

where K=e? |, a=(K-1), d=(K’-1) . X, and
X, are two parameters defined as:

X, =<n">0 . X, :<D“>0 (4.13)

X, and X, are parameters of seminal importance since

all correlators and fundamental properties of the system
under study can be expressed in terms of them. Relevant
physical quantities, such as the mean value of the particle
density and doubly occupancy, and the charge correlators

% and A" can be easily computed [5]:

. (X, =2X,))(A+aX, +a’X,)+2X, (1+dX, +d*X,)
T 1= X, + X))+ (X, —2X, )1 +aX, +aX,) + X, (1+dX, +d>X,)
b X, (1+dX, +d*X,)
(1= X, + X,)+ (X, =2X,)(1+aX, +a2X,) + X, (1 +dX, +d>X,)’
(4.14)

and

22

e {<["“<0>J“>0+Z (81fn:“+Bzg;:’)<[n“<0)1m*“>ﬂ}

e,

o~

A= <e,fm‘ > {B, (I 1), +Z [(B,+2B,)f? +2Bzg‘m”]<[n"<0>1“*k>o},

0

(4.15)

f and g\” are some easily computable

where n

coefficients depending on the external parameters T and V
and where the expectation value <[n" O >O can also be
expressed in terms of X, and X, [5].

As a result, the solution of the model has been
reduced to the determination of just two parameters. X,

and X, can be determined by imposing translational
invariance. In particular, the requests <n(0)>:<n“(0)>
and (D(0)) = <D°’(0)> lead to a set of two self-consistent

equations [5]:
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X, =2eM(1- X, —dX,)(1+aX, +a’X,)"" +e”[2+(d - D)X, —2dX,](1+dX, +d>X,)*"
X, =V 14+dX, - (2d +1)X, ] +dX, +d*X,)"" —2eM KX, (1+aX, +a’X,)"".

(4.16)

A full investigation of these equations will be given
elsewhere. In this communication, we shall restrict our
analysis to the possibility of a breakdown of the particle-
hole symmetry.

5. Breakdown of the particle-hole symmetry

In this Section we shall study the possibility of a
spontaneous breaking of the particle-hole symmetry. Let
us consider the following value of the chemical
potential: £ =U /2+2zV . For this value of x, Egs. (4.16)

become

X, = 26K (1= X, —dX,)(1+aX, +a’X,)"" + K2 [2+(d =X, —2dX, ](1 +dX, +d*X,)*"

(5.1
X, = K [1+dX, —=(2d + )X, J(1+dX, +d*X,)" =2GK X, (1+aX, +a’X,)""
R (5.2)

and Egs. (4.14) become:

2GK*(1+aX, +a*X, ) +2(1+dX, +d*X,)’
K 426K (1+aX, +a’X,)’ +(1+dX, +d>X,)?
B (1+dX, +d*X,)’
K?* +2GK*(1+aX, +a’X,)* +(1+dX, +d*X,)*’
(5.3)

where G =e”™'? Tt is easy to show that for
X, =1-dX, (5.4)

Eq. (5.1) is always satisfied. Then, by substituting Eq.
(5.4) into Eq. (5.3) one obtains

1

D-— . 5.5
2+2G(1-a’X,)’ (5-3)

n=1 ,

That is, solution (5.4) is in agreement with the
particle-hole symmetry. Upon inserting Eq. (5.4) into Eq.
(5.2) one obtains:

X,(1+K?)+2GKX, (1-a’X,)"" =1=0. (5.6)

Thus, for £x=U/2+12zV , Egs. (4.16) admit a solution

which satisfies the particle-hole symmetry and is described
by the set of equations (5.4) and (5.6). One may ask
oneself if Egs. (5.1) and (5.2) do admit other solutions,
different from the one described by (5.4) and (5.6) and
thus breaking the particle-hole symmetry. To this purpose,
one may perturb the solution (5.4), by setting
X, =1-dX, +w. With a little algebra it is easy to show

that a solution with w= 0 does exist if, and only if, the

following equation
U/N|+2

2K 2 [2+ K@= +(K+D)7' (z=1)""[z2-K*(z-2)] =0

(5.7)

is satisfied. This equation will fix the critical temperature
T. below which the system admits other solutions, which
do not satisfy the particle-hole symmetry. Numerical
calculations show that Eq. (5.7) admits a solution only for
negative values of V. Thus, in the following, we shall
consider only the case of attractive intersite potential. It is
interesting to consider Eq. (5.7) in two extremal limits,
namely U /|V| — —o0 andT, = 0. In the former limit, as
expected, one finds that the critical temperature is the

same as the one of a spinless fermionic system on the
Bethe lattice, equivalent to the spin-1/2 Ising model [4.,6]:

1K (2-2)=0 = K=t o Kl 2
z-2 V| l(zj

o2

z-2

(5.8)

The limit T, — 0, provides the value of the ratio U/|V|
at which one should expect a quantum phase transition:

PUI2 o ANzl o 132l 9= _ — (Z*I)H
22M72(2-2y" - (z-)"'K@z-9=0 = (U/2-]V|) kETcln{z(pz)”}

(5.9)

Thus, in the limit T, > 0, one finds that U/|V|=2,
independently of the value of z.

The results obtained from Eq. (5.7) are displayed in

Fig. 1. One observes that, at fixed coordination number, by
increasing U from large negative values (i.e., attractive
onsite interaction) one finds a decrease of the critical
temperature.
An interesting feature of the model’s phase diagram is that
it shows regimes with a re-entrance: namely, fixing
U/|V|>2 and lowering the temperature, one switches from
a particle-hole symmetry preserving phase to another one
where this symmetry is broken at a certain critical
temperature. Then, as evidenced in Fig. 1, lowering further
the temperature, one finds another critical temperature at
which the symmetry is restored. How pronounced the re-
entrance is, depends on z.

5.0

2 <
o

40 [

3.0
T./IVI

20 F

111

0.0 AT I TR AT AT TN B A AT A SR A
-10 Soou/M 0 5

Fig. 1.The normalized critical temperature T /|V |as a

function of the on site interaction U/|V| for different
values of the coordination number z of the Bethe lattice.
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6. Concluding Remarks

In this paper we have obtained the finite temperature
phase diagram of a system of fermions with onsite and
nearest-neighbor interactions localized on the sites of the
Bethe lattice. The Hamiltonian describing such a system
defines the so-called extended Hubbard model in the
atomic limit. Upon using the equations of motion method,
it is possible to exactly solve the model. For attractive
nearest-neighbor interaction we find a critical temperature
at which the system undergoes a transition to a phase
where the particle-hole symmetry is broken. This critical
temperature depends on the ratio U/|V| and on z. It
increases with increasing z and presents a re-entrant
behavior for U/|V|>2.

Appendix Spin-1 Ising model on the Bethe lattice

In this Appendix we shall analyze the correspondence
between the extended Hubbard model on the Bethe lattice
and the spin-1 Ising model defined on the same lattice.

A transformation from a fermionic to a spin Hamiltonian
can be performed by the use of the pseudospin variable

S(i):
S(i)=n,(i)+n,(i)~1=n()-1. (A.1)

S(i) can take four values, with S(i)=0 doubly degenerate:

n@)=0 n()=0 < S()=-1
nT(_i):l n¢(i_):0 o sq)zo A2
n@)=0 n@)=1 < S@i)=0
n()=1 n@)=1 = S@i)=1.

Under the transformation (A.1) the Hamiltonian (2.2) can
be cast in the form:

H=AS*(0)~hS(0)+E,+3 H®
! pZ (A3)

z-1
H® = —JS(0)S(p)+A S*(p)~hS(p)+ Y. H®™,
m=1

where h=pu—-2V-U/2 , J=-V, A=U/2 and, in the
thermodynamic limit, E; =(—¢+V)N, N being the total
number of sites. Thus, the Hamiltonian (A.3) appears as
the one of a spin-1 Ising model with nearest-neighbor
exchange interaction J in the presence of a crystal field A
and of an external magnetic field h. The difference here is
that the Hamiltonian (A.3) is pertinent to a four-level
system because of the spin degeneracy. It is possible to get
rid of the spin degeneracy by mapping the fermionic

Hamiltonian on the standard spin-1 Ising one with
§(i):{—1,0,1} paying the price of making the crystal
field A to be [7.8]:

temperature  dependent

A=U/2+k,Tlog2 . The double degeneracy of every

S(i)=0 leads to a factor 2 for every singly occupied site in
the partition function of the classical spin system. This
gives rise to an overall factor

25025080 (ag
i

One may rewrite the partition function of Hamiltonian
(A.3) as follows:

exp{-BH[SM)]},
(A.5)

Z= Y epi-pHISOL= Y

{S()1={-1,0,0,1} (S()={-1,0,1}

where H is the Hamiltonian of the standard spin-1 Ising
model on the Bethe lattice, but now with an effective
temperature-dependent crystal field:

H =AS*(0)-hS(0)+E, +i H®
p=1 (A.6)

z-1
H® =-JS0)S(p)+A S*(p)—hS(p)+>, H®™
m=1

where E, =E, +k,TIn2 and A=A+k,T In2 . Having

established the mapping between the two models, we find
that our critical temperature exactly agrees with the one
previously found in the literature [9].
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